
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 6, pp. 564–576.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 6, pp. 86–101.

CONTROL IN TECHNICAL SYSTEMS

Kalman Filter in the Strapdown Airborne Gravimetry

Problem Based on the Refined Model

of GNSS Data Errors

A. S. Arkhipova∗,a and V. S. Vyazmin∗∗,b

∗Robotics Center, Sberbank, Moscow, Russia
∗∗Lomonosov Moscow State University, Moscow, Russia

e-mail: aalsearkhipova@sberbank.ru, vadim.vyazmin@math.msu.ru

Received December 30, 2024

Revised February 19, 2025

Accepted March 28, 2025

Abstract—The paper considers the problem of gravity disturbance determination on the aircraft
flight trajectory using measurements from a strapdown airborne gravimeter. The gravimeter
measurements include raw data from the inertial sensors and global navigation satellite system
(GNSS) receivers. The problem is reduced to optimal stochastic estimation given an a priori
model of gravity disturbance in the time domain and stochastic models of the inertial sensor
measurement errors and the GNSS data errors (the errors of kinematic accelerations derived
from carrier phase measurements). The estimation algorithm is the Kalman filter and smooth-
ing. We show that the accuracy of gravity estimation can be improved when using a refined
model of the kinematic acceleration errors instead of using the traditional model (a white noise
process). The refined model is given as the second difference of a discrete-time white noise.
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1. INTRODUCTION

Strapdown airborne gravimetry aims to determine gravity disturbance from measurements of
a strapdown gravimeter on the flight trajectory of an aircraft (fixed-wing aircraft, helicopter or
drone). The gravity disturbance is the difference between the magnitudes of the real gravity vector
and normal gravity vector. The normal gravity is defined for the ellipsoid model of the Earth [1].

A strapdown airborne gravimeter consists of a strapdown inertial navigation system or iner-
tial measurement unit (IMU), which includes high-precision inertial sensors (accelerometers and
gyroscopes) and geodetic-grade global navigation satellite system (GNSS) receivers (onboard and
ground-based). Raw gravimeter data includes measurements from the IMU inertial sensors and
GNSS receivers and are processed following the steps of a postprocessing scheme [2] (see also,
e.g., [3–5]):

(1) computing GNSS solutions (determining position, velocity, and accelerations of the aircraft
from raw GNSS measurements);

(2) computing integrated IMU/GNSS solutions (estimating the attitude of the gravimeter’s IMU,
the instrumental errors of the IMU inertial sensors, GNSS antenna offsets, etc.);

(3) computing gravimetric solution (determining the gravity disturbance along the flight trajec-
tory).
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KALMAN FILTER IN THE STRAPDOWN AIRBORNE GRAVIMETRY PROBLEM 565

In the first stage of the postprocessing scheme, GNSS solutions are calculated using code pseu-
dorange, Doppler pseudorange rate and carrier-phase measurements from dual-frequency receivers
accessing signals from one or several satellite constellations (GPS, GLONASS, GALILEO, BeiDou,
etc.) [4, 5]. The carrier-phase differential mode of data processing is typically used to reduce GNSS
measurement errors caused by ionospheric and tropospheric effects. Alternatively, the Precise Point
Positioning (PPP) technology, which does not require ground-based receivers (base stations), may
be used to obtain high-accuracy GNSS solutions [6]. The purpose of this postprocessing stage is
to calculate the aircraft’s velocity and/or accelerations with high accuracy, primarily using carrier
phase measurements and, less commonly, Doppler pseudorange rate measurements (see, e.g., [5, 7]).
Another approach is to use these two types of measurements simultaneously, with Doppler pseudo-
range rate measurements serving as auxiliary data in case of carrier phase measurement failures [4].

In the second stage of postprocessing (IMU/GNSS integration), the position, velocity and atti-
tude of the gravimeter’s IMU computed from the inertial sensor measurements are refined using the
GNSS solutions. The mathematical foundation of this task is the IMU error dynamics equations
expressed in the axes of the navigation (geodetic) frame (see, e.g., Section 5.2 in [1]). The vertical
channel is excluded from the equations, which removes gravity disturbance (as an unknown un-
knwn variable) from the equations. The influence of gravity disturbance on the horizontal channels,
expressed as the product of gravity disturbance and the horizontal attitude errors, is commonly
neglected as a second-order small quantity. Next, an optimal stochastic estimation problem is
formulated and solved using Kalman filtering and smoothing, which results in the state vector
estimates obtained at each point of the aircraft’s flight trajectory. In particular, the estimates of
the IMU attitude errors and the inertial sensor errors are obtained at this stage (for details, please
see [2]).

In this work, we focus on the third stage of postprocessing, which is solving the gravimetry
problem (determining gravity on the flight trajectory). The basic idea of solving the problem is to
form the difference between the IMU vertical channel data and GNSS data (kinematic acceleration
in the vertical direction). The problem is formulated as an optimal stochastic estimation problem
given a priori stochastic models of gravity disturbance, sensor measurement errors and GNSS data
errors. The solution to the estimation problem is provided by the Kalman filter and smoothing.
Traditionally, the GNSS acceleration errors are modeled as white noise [8, 9]. However, these errors
typically have a more complex structure and are correlated in time.

In this work, a refined stochastic model of the GNSS acceleration errors is introduced (for
the first time to our knowledge) under the assumption that GNSS accelerations are computed
using carrier phase measurements (Doppler pseudorange rates are not considered in the paper).
Namely, we assume that the kinematic accelerations are computed based on double differences of
GNSS carrier phase measurements (involving three successive time epochs) [10]. The refined model
of GNSS acceleration errors is defined in the time domain as the second central difference of a
discrete-time white noise process. The airborne gravimetry problem is then reduced to a linear
optimal stochastic estimation problem and solved in the Kalman filter framework. The results of
testing the proposed approach using real airborne gravimeter data are presented and discussed.
The results demonstrate a higher accuracy of gravity determination comparing to the traditional
approach based on the simplified GNSS acceleration error model (white noise).

2. MATHEMATICAL MODELS

2.1. Basic Equations

The following notation is used in this study:

• M is the proof mass of the accelerometer triad of the gravimeter’s IMU;
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• Mx is the geodetic frame with the origin at the point M and the axes pointing east, north,
and up along the normal to the reference ellipsoid (denoted as E,N,Up) [1];

• Mz is the IMU body frame with the axes z1, z2, z3 mutually perpendicular and aligned with
the sensitivity axes of the calibrated IMU accelerometers.

The mathematical foundation of the strapdown airborne gravimetry problem is the equation of
motion of the point M expressed in the geodetic frame Mx (for the expressions in other reference
frames see, e.g., [1]):

ax = −(Ωx + 2ux)× vx + g0
x + δgx + LT

zxfz, (1)

where vx,ax are the velocity and acceleration vectors (relative to the Earth) of the point M ,
respectively, expressed in the geodetic frame Mx; Ωx, ux are the angular velocity of Mx relative
to the Earth and the angular velocity of the Earth relative to the inertial space, respectively;
g0
x = (0, 0,−g0)

T is the normal gravity vector at the point M [11]; δgx is the gravity disturbance
vector [1]; fz is the specific force at the point M expressed in the IMU body frame Mz; Lzx is the
transformation matrix from the geodetic frame Mx to the body frame Mz (an orthogonal matrix).

The vertical projection of (1) is given by the formula (the fundamental equation of airborne
scalar gravimetry):

aup = getv − g0 − δg + LT
3 fz, (2)

where aup is the relative vertical acceleration of the point M , getv is the Eötvös correction term
(the vertical projection of the inertial forces), g0 is the magnitude of the normal gravity vector
at the point M , δg is the magnitude of δgx (gravity disturbance), L3 is the third column of the
transformation matrix Lzx.

The gravimetric problem, as noted earlier, is solved at the final stage of the postprocessing
strategy and involves determining the gravity disturbance δg on the flight trajectory based on (2)
using raw accelerometer measurements, GNSS solutions (positions, velocities and accelerations),
and integrated IMU/GNSS solutions (estimates of the IMU attitude).

2.2. Measurement Models

In (2), only the specific force fz is measured directly (by the IMU accelerometers). The mea-
surement model is

f ′z = fz + qf , (3)

where f ′z is the vector of three accelerometer measurements and qf is the vector of measurement
errors.

The vertical kinematic acceleration of the aircraft is derived from raw (carrier phase) GNSS
measurements and can be expressed as

agpsup = aup + ea, (4)

where agpsup is the vertical acceleration computed from raw GNSS data and ea is the acceleration
error.

The Eötvös correction term getv is determined using the position and the horizontal components
of the velocity vector at the point M [1]. The normal gravity g0 at the point M is determined using
a theoretical model for the normal gravity at the ellipsoid (e.g., Helmert’s formula or Somigliana’s
formula) and the height correction term [11]. For computing the Eötvös correction term and normal
gravity, the GNSS position and velocity solutions (or the IMU/GNSS solutions) are used [4]. The
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lever-arm effect caused by the distance between the onboard GNSS antenna and the IMU should
be taken into account.

The estimate L̃3 of the third column L3 is also assumed to be known and computed from the
estimates of the IMU attitude angles (heading, roll and pitch) [12].

The computed vertical acceleration a′up is defined as

a′up = getv − g0 + L̃T
3 f

′
z. (5)

2.3. Fundamental Equation of Airborne Strapdown Gravimetry

Define the difference between the computed vertical acceleration and the true value as Δaup =
aup − a′up, which can be expressed using (2) and (5) in the following form:

Δaup = −δg + LT
3 fz − L̃T

3 f
′
z. (6)

The transformation matrix L̃zx is computed from the integrated IMU/GNSS solution, that is,
from the estimated (refined) IMU attitude angles (heading, roll, pitch), and is an orthogonal matrix.
The relationship between the true transformation matrix Lzx and the computed matrix L̃zx can be
written as

Lzx = (I + κ̂)L̃zx,

where κ̂ is a skew-symmetric matrix composed of components of the small rotation vector κ =
(kE , kN , kUp)

T. The vector κ characterizes the residual attitude error, that is, the errors in the
IMU attitude estimates obtained at the IMU/GNSS integration stage. Here, kE , kN are the residual
attitude errors in the east and north directions, respectively, and kUp is the error of the azimuthal
error estimate.

The right-hand side of (6) can be rewritten using (3) as:

LT
3 fz − L̃T

3 f
′
z = (LT

3 − L̃T
3 )f

′
z − L̃T

3 qf = −kEf
′
N + kNf ′

E − L̃T
3 qf , (7)

where f ′
E = L̃T

1 f
′
z, f

′
N = L̃T

2 f
′
z are the horizontal projections of the accelerometer measurements in

the east and north directions, respectively, and L̃1, L̃2 are the first two columns of the transformation
matrix L̃zx.

Using the GNSS-derived vertical acceleration (4), the measurement of Δaup can be formed as

y := agpsup − a′up = Δaup + ea, (8)

where ea is the error of the GNSS-derived acceleration.

Substituting (7) and (6) into (8), we finally obtain the basic equation of airborne strapdown
gravimetry in the form containing measurements and measurement errors:

y = −δg − kEf
′
N + kNf ′

E − L̃T
3 qf + ea. (9)

Other systematic errors, such as GNSS antenna offsets or time-synchronization errors between
the IMU and GNSS data [2], may also be included in (9). However, for simplicity, these errors are
not considered here.

Equation (9) is considered over the flight time interval [t0, tn]. All measurements in (9) (y, f ′
E,

f ′
N , and L̃3) are assumed to be resampled at the GNSS data rate. Let ti be a time stamp of GNSS
data (i = 0, . . . , n) and Δt the time step. The remaining variables in (9) (δg, kE , kN , qf , and ea)
are treated as unknown functions of time, for which a priori models are introduced below.
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3. FORMULATION OF THE OPTIMAL ESTIMATION PROBLEM

Problem (9) is reduced to optimal stochastic estimation. A priori stochastic models are intro-
duced for gravity disturbance δg, residual attitude errors kE , kN and GNSS vertical acceleration
error ea. The measurement errors of three accelerometers qf are modeled as a modeled as stochas-
tic processes, namely, as discrete-time white noises with zero mean and variance σ2

f (it is assumed
here that all three accelerometers have the same accuracy).

3.1. Stochastic Models of Gravity Disturbance and IMU Systematic Errors

In airborne gravimetry, it is usually assumed that gravity (as a function of flight time) is a
slowly-varying function (with the spectrum mostly concentrated at low frequencies) [13]. An a
priori stochastic model of gravity as a stationary random process in time is typically introduced.
The models commonly used in airborne gravimetry algorithms are Gauss–Markov models (typi-
cally of order two or three) [14, 15], integrals of a white noise [3, 4, 13], and Jordan’s model [16].
Deterministic spatial models are also occasionally used in airborne gravimetry [17, 18]. A detailed
comparison of all these models is beyond the scope of this paper, but a partial comparison can be
found in [15] (Section 5.2) and [14, 15, 17, 18]. For instance, [15] notes that using the Gauss–Markov
models of different orders yields similar results in airborne gravimetry as when using the integrals
of a white noise.

In this work, gravity disturbance is modeled as the second integral of a white-noise process. The
model takes into account the long-wavelength nature of gravity, agrees well with real gravimetric
data in many areas [13] and is defined by a simple equation in the time domain: δg̈ = qg, where
qg is a white noise. The power spectral density (PSD) of the gravity model is:

Sg(ω) =
σ2

2πω4
, (10)

where ω is the angular frequency and σ2 is the intensity of white noise.

Let us write the equations of the gravity model in discrete time denoting with the subscript i
the value at the time moment ti: {

δgi+1 = δgi +Δt pi,

pi+1 = pi + qg,i,
(11)

where qg,i is a discrete-time white noise with zero mean and variance σ2
g .

Further, we introduce the stochastic models for the residual attitude errors kE , kN in east and
north directions. Recall that the IMU attitude errors are estimated at the IMU/GNSS integration
stage. The horizontal attitude errors contain the so-called Schueler oscillations [12] and in absolute
value typically do not exceed 0.5 arcmin when using a state-of-the-art IMU [2]. The residual
attitude errors kE , kN do not contain the Schueler oscillations, are typically less than 10 arcsec in
absolute value and can be modeled as slowly varying functions of flight time [2, 4].

Based on the above, we introduce the models of kE, kN as integrals of white noise: k̇E = qE,
k̇N = qN , or in discrete time as: {

kE,i+1 = kE,i + qE,i,

kN,i+1 = kN,i + qN,i,
(12)

where qE,i, qN,i are discrete-time white noises with zero mean and variances σ2
E , σ

2
N , respectively.
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3.2. Refined Model of Kinematic Acceleration Error

Traditionally, in airborne gravimetry algorithms the error in GNSS-derived accelerations is as-
sumed to be a white noise. In this work, a refined model of the acceleration error is introduced
taking into account the specifics of the acceleration computation method. Namely, we assume that
the kinematic accelerations are computed based on numerical differentiation of carrier phase mea-
surements (by forming double differences of measurements using three successive epochs ti−1, ti,
ti+1) [10]. Taking this into account, we introduce the refined model of GNSS acceleration error in
the following form:

ea,i =
qa,i+1 − 2qa,i + qa,i−1

Δt2
, (13)

where qa,i is a discrete-time white noise with zero mean and variance σ2
a.

The autocorrelation function of the process ea,i denoted by Ke(m) (m is an integer) takes the
following values:

Ke(0) =
6σ2

a

Δt4
, Ke(±1) = − 4σ2

a

Δt4
, Ke(±2) =

σ2
a

Δt4
,

and zero for other m.

The PSD of the process ea,i is given by (assuming Δt = 1 for simplicity):

Se(e
jω) =

1

2π

∞∑
m=−∞

Ke(m) e−jωm =
2σ2

a

π
(1− cosω)2, (14)

where j is the imaginary unit.

Figure 1 shows the PSD of the refined error model (13)–(14) and PSD of real kinematic accel-
erations from a static test (the GNSS receiver from JAVAD with the sampling rate of 10 Hz was
used). The recording was made while the aircraft was at the parking position at the airport (see

Fig. 1. Power spectral densities of GNSS carrier-phase acceleration errors (real data; solid line)
and of theoretical models of GNSS acceleration errors: refined model (dotted line) and traditional
simplistic model (dashed line), (m2/s4)/Hz.
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Section 4 for details). The raw GNSS data processing (acceleration computation) was performed
using the software developed by Lomonosov Moscow State University [10]. Since the PSD of the
refined model (14) is proportional to ω4 at low frequencies, its plot is shown in Fig. 1 as a straight
line (in a logarithmic scale).

In Fig. 1, the PSD of the simplified GNSS acceleration error model (white noise), which is
traditionally used in airborne gravimetry algorithms, is also shown. From Fig. 1, it follows that the
refined model matches the real data significantly better, both in the high-frequency domain and
near the cutoff frequency of the gravimetric filter [1], that is, in the range of 0.01–0.1 Hz, than the
simplified model.

Further, a state-space representation of the refined model (13) will be required. Let us introduce
auxiliary variables ξi, ηi: {

ηi+1 = ξi,

ξi+1 = qξ,i,
(15)

where qξ,i := qa,i+1. Rewriting the model (13) using the auxiliary variables, we obtain:

ea,i =
ηi − 2ξi + qξ,i

Δt2
. (16)

3.3. Problem Statement and Estimation Algorithm

Let us combine the basic equation of airborne gravimetry (9), the stochastic models of the gravity
disturbance (11), the residual attitude errors (12) and the refined model of GNSS acceleration error
(15)–(16) into one state-space system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kE,i+1 = kE,i + qE,i,

kN,i+1 = kN,i + qN,i,

δgi+1 = δgi +Δt pi,

pi+1 = pi + qg,i,

ηi+1 = ξi,

ξi+1 = qξ,i,

yi = −δgi − kE,if
′
N,i + kN,if

′
E,i +

1

Δt2
(ηi − 2ξi + qξ,i)− L̃T

3,iqf,i.

(17)

The state-space system can be written in matrix form:{
xi+1 = Aixi +Biqi,

yi = Cixi + ri,
(18)

where the state vector xi has the following form

xi = (kE,i, kN,i, δgi, pi, ηi, ξi)
T ∈ R

6. (19)

The vector qi is the system noise vector:

qi = (qE,i, qN,i, qg,i, qξ,i)
T ∈ R

4. (20)

The scalar ri is the measurement noise:

ri =
1

Δt2
qξ,i − L̃T

3,iqf,i. (21)
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The matrices Ai, Bi, Ci in (18) consist of the coefficients at the unknown variables and noises
in (17) and have dimensions 6× 6, 6× 4 and 1× 6, respectively.

The covariance matrix of the system noise vector (20) E[qiq
T
i ] is a diagonal 4× 4-matrix whose

diagonal elements are the variances of the components of qi. The variance of the measurement
noise ri (white noise) is easily computed from (21) and is given by the formula

E[r2i ] =
σ2
ξ

Δt4
+ σ2

f ,

where we use the fact that L̃3,i is a column of an orthogonal matrix.

The processes ri and qi are cross-correlated and their cross-covariance matrix is given by the
expression:

E[riq
T
i ] =

1

Δt2
(0, 0, 0, σ2

ξ ).

Under the above assumptions, we now can formulate the optimal estimation problem (in the
mean-square error sense) for the state vector xi at each time instant given the state-space sys-
tem (18) and measurements yi, i = 0, . . . , n. We assume that the estimate of the state vector at
the initial time moment x0 is 0 and the initial covariance matrix E[x0x

T
0 ] is given. The optimal

estimation algorithm is the Kalman filter and smoothing [13].

3.4. Theoretical Analysis of Gravity Estimation Accuracy

Let us determine the gravity estimation accuracy when using the proposed approach (based on
the refined model of kinematic acceleration error). For this, we derive an approximate expression
for the transfer function of the optimal filter, which maps the measurement y (9) to the gravity
disturbance estimate (the so-called gravimetric filter).

First, we reduce equation (9) to stationary form by neglecting the systematic errors kE , kN and
accelerometer measurement noise qf . The gravity disturbance δg and GNSS acceleration error ea
are assumed here to be continuous-time stationary processes with given PSDs (10) and (14), respec-
tively. Then the optimal (in the mean-square error sense) linear estimate of gravity is determined
by a smoothing filter that is given in the frequency domain by the expression (the Wiener filter) [19]

W1(ω) = Sg(ω) (Sg(ω) + Se(ω))
−1 =

⎛⎝1 +

(
σa
σg

)2

ω8

⎞⎠−1

. (22)

In deriving (22), we used expression (14) in an approximate form as σ2
a

2πω
4 for small ω.

Thus, the gravimetric filter based on the refined GNSS acceleration error model (14) approxi-
mately corresponds to the two-pass Butterworth filter of order 4 (Fig. 2a). In Fig. 2a, also shown is
the gravimetric filter W2(ω) constructed using the simplified GNSS acceleration error model (white
noise with intensity σ2

q ) and the same model for gravity:

W2(ω) =

⎛⎝1 +

(
σq
σg

)2

ω4

⎞⎠−1

. (23)

The transfer function (23) corresponds to the two-pass Butterworth filter of order 2.

Let us determine the accuracy of gravity estimation using the constructed filters as the PSD of
the estimate error, provided that the true PSD of gravity coincides with the a priori model (10)
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Fig. 2. (a) Transfer functions of the gravimetric filters in the new approach (based on the refined model of
GNSS acceleration error) and in the common approach (based on a simplistic model of the GNSS acceleration
error). (b) Power spectral densities of the errors in gravity estimates provided by the gravimetric filters,
mGal2/Hz (1 mGal = 10−5 m/s2).

and the true PSD of the GNSS acceleration error coincides with the model (14). Then the PSD of
the error of the gravity estimate provided by the gravimetric filter W1(ω) is determined as

Sδg(ω) = Sg(ω)Se(ω) (Sg(ω) + Se(ω))
−1 =

σ2
aω

4

2π

⎛⎝1 +

(
σa
σg

)2

ω8

⎞⎠−1

. (24)

The PSD of the error of gravity estimate obtained using the gravimetric filter W2(ω) is determined
by:

Sδg(ω) = |1−W2(ω)|2Sg(ω) + |W2(ω)|2Se(ω)

=
σ2
aω

4

2π

(
1 +

σ4
q

σ2
gσ

2
a

)⎛⎝1 +

(
σq
σg

)2

ω4

⎞⎠−2

. (25)

The plots of PSDs (24)–(25) are shown in Fig. 2b. The figure shows that when using the filter
based on the refined GNSS acceleration error model, the PSD of the gravity estimation error is
smaller than when using the filter based on the simplified acceleration error model.

4. NUMERICAL RESULTS

To test the developed gravity estimation algorithm (Section 3.3), we used data from a state-of-
the-art strapdown airborne gravimeter (iCORUS by iMAR) recorded on December 17, 2022 during
a flight of an airborne gravity campaign. The gravimeter was flown along ten repeated lines (i.e.,
above the same ground track) during this flight (Fig. 3). The repeated lines are oriented in the
east-west and west-east directions. The length of each line is about 110 km. The flight was carried
out using a Cessna 208B aircraft at a constant altitude of 760 m above the reference ellipsoid. The
average aircraft speed along survey lines was 70 m/s. The total flight duration is 7 hours. The
gravimetry campaign was conducted by Aerogeophysica JSC (Russia) in the Krasnoyarsk Krai.

The gravimeter data included raw measurements from the IMU inertial sensors (at the data
rate of 400 Hz) and raw measurements from the onboard and ground-based GNSS (GPS) receivers
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Fig. 3. Flight trajectory on the longitude-latitude plane (GNSS data).

Fig. 4. Vertical kinematic accelerations from GNSS carrier-phase measurements, m/s2.

from JAVAD (at 10 Hz). Preliminary stages of raw data postprocessing were performed using the
software developed by the Faculty of Mechanics and Mathematics at Lomonosov Moscow State
University [2] (software packages INS-GNSS and IMU-GRAV [20, 21]). Namely, the following tasks
were solved at the initial stage:

1) computing the GNSS solutions (in the carrier phase differential mode), which included cal-
culation of

• position (latitude, longitude and height above the reference ellipsoid) of the antenna of the
onboard GNSS receiver;

• velocity (east, north and vertical components) of the onboard receiver;
• kinematic accelerations (east, north and vertical components) of the onboard receiver;
2) computing integrated IMU/GNSS solutions, which included estimation of
• IMU attitude angles (heading, roll and pitch);
• systematic errors of the IMU inertial sensors.

The vertical kinematic accelerations calculated from the carrier phase measurements using the
algorithm from [10] are shown in Fig. 4.

The gravity estimate along the flight trajectory was computed using the proposed algorithm
based on the refined GNSS acceleration error model. The gravity estimation accuracy was deter-
mined based on the statistics from ten repeated flight lines. The root-mean-square (RMS) value
is 0.706 mGal. The gravity estimates at the repeated lines are shown in Fig. 5.

For comparison, another estimate of the gravity disturbance was obtained using the standard
approach, which is based on the simplified GNSS acceleration error model (white noise). The same
stochastic models were used for the residual attitude errors kE , kN , accelerometer measurement
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Fig. 5. Gravity disturbance estimates at the repeated lines provided by the new algorithm based on the refined
model of GNSS acceleration error, mGal.

Fig. 6. Difference between the gravity disturbance estimates obtained in the new and standard approaches,
mGal.

noise qf and gravity disturbance in (9) as in the proposed approach. The estimation algorithm in
the standard approach is the Kalman filter and smoothing. As shown above, the transfer function
of the gravimetric filter in the standard approach is close to the 2nd-order two-pass Butterworth
filter (Fig. 2a). The accuracy of the gravity estimates obtained in the standard approach was
also determined based on the statistics from ten repeated lines and is 0.749 mGal (RMS). This
demonstrates a slightly worse repeatability of the gravity estimates compared to the results from
the proposed approach (based on the refined GNSS acceleration error model).

In Fig. 6, the difference between the gravity estimates computed by the proposed and standard
approaches is shown. The standard deviation of the difference is 0.764 mGal, which is quite
significant. We attribute this discrepancy to the gravity estimation error introduced by the standard
approach as it showed worse repeatability of the gravity estimates at the repeated lines.

The absolute values of the difference between the gravity estimates provided by the two ap-
proaches reach 2.5 mGal, with maxima occurring during the aircraft turns (each lasting from 5
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to 8 minutes) between the repeated lines (visible as spikes in Fig. 6). This can probably be ex-
plained by the fact that during aircraft turns, GNSS acceleration errors have a wider frequency
range and are more effectively suppressed by the gravimetric filter of the proposed approach, which
has a steeper roll-off near the cutoff frequency (Fig. 2a).

5. CONCLUSIONS

The gravity estimation algorithm based on the refined model of errors in the kinematic acceler-
ations computed from the GNSS carrier phase measurements has been proposed. The refined error
model takes into account the specificity of the method that was used for computing the kinematic
accelerations and is defined in the time domain as the second central difference of a discrete-time
white noise process.

The proposed approach was compared with the standard one, which uses a simplified GNSS
acceleration error model (white noise). The approaches were compared based on processing raw
data from a strapdown gravimetry flight (ten repeated lines). The results show a higher accuracy
of the gravity estimates provided by the proposed approach, which is 0.71 mGal (RMS), while
the standard approach showed the 0.75 mGal accuracy. The difference between the gravity esti-
mates obtained by the two approaches reaches 2.5 mGal and is attributed to the estimation errors
introduced by the standard approach.

Based on the obtained test results, we conclude that the proposed approach seems promis-
ing for implementing in postprocessing software packages of state-of-the-art strapdown airborne
gravimeters.
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